Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747600

RESUMO

Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen's persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen's in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen's obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.


Assuntos
Ehrlichia chaffeensis/genética , Ehrlichiose/microbiologia , Genes Bacterianos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Cães , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/transmissão , Biblioteca Gênica , Genoma Bacteriano/genética , Macrófagos/microbiologia , Mutagênese Insercional , Mutação , Carrapatos , Transcrição Gênica , Virulência/genética
2.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396898

RESUMO

Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. The causative agent of this disease, Rickettsia rickettsii, is transmitted by several species of ticks, including Dermacentor andersoni, Rhipicephalus sanguineus, and Amblyomma americanum RMSF clinical signs generally include fever, headache, nausea, vomiting, muscle pain, lack of appetite, and rash. If untreated, it can quickly progress into a life-threatening illness in people and dogs, with high fatality rates ranging from 30 to 80%. While RMSF has been known for over a century, recent epidemiological data suggest that the numbers of documented cases and the fatality rates remain high in people, particularly during the last two decades in parts of North America. Currently, there are no vaccines available to prevent RMSF in either dogs or people. In this study, we investigated the efficacies of two experimental vaccines, a subunit vaccine containing two recombinant outer membrane proteins as recombinant antigens (RCA) and a whole-cell inactivated antigen vaccine (WCA), in conferring protection against virulent R. rickettsii infection challenge in a newly established canine model for RMSF. Dogs vaccinated with WCA were protected from RMSF, whereas those receiving RCA developed disease similar to that of nonvaccinated R. rickettsii-infected dogs. WCA also reduced the pathogen loads to nearly undetected levels in the blood, lungs, liver, spleen, and brain and induced bacterial antigen-specific immune responses. This study provides the first evidence of the protective ability of WCA against RMSF in dogs.


Assuntos
Antígenos de Bactérias/imunologia , Doenças do Cão , Rickettsia rickettsii/imunologia , Vacinas Antirrickéttsia/imunologia , Febre Maculosa das Montanhas Rochosas , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Doenças do Cão/imunologia , Doenças do Cão/microbiologia , Doenças do Cão/prevenção & controle , Cães , Proteínas Recombinantes/imunologia , Febre Maculosa das Montanhas Rochosas/imunologia , Febre Maculosa das Montanhas Rochosas/prevenção & controle , Febre Maculosa das Montanhas Rochosas/veterinária
3.
J Asia Pac Entomol ; 21(3): 852-863, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34316264

RESUMO

The lone star tick, Amblyomma americanum, is an obligatory ectoparasite of many vertebrates and the primary vector of Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis. This study aimed to investigate the comparative transcriptomes of A. americanum underlying the processes of pathogen acquisition and of immunity towards the pathogen. Differential expression of the whole body transcripts in six different treatments were compared: females and males that were E. chaffeensis non-exposed, E. chaffeensis-exposed/uninfected, and E. chaffeensis-exposed/infected. The Trinity assembly pipeline produced 140,574 transcripts from trimmed and filtered total raw sequence reads (approximately 117M reads). The gold transcript set of the transcriptome data was established to minimize noise by retaining only transcripts homologous to official peptide sets of Ixodes scapularis and A. americanum ESTs and transcripts covered with high enough frequency from the raw data. Comparison of the gene ontology term enrichment analyses for the six groups tested here revealed an up-regulation of genes for defense responses against the pathogen and for the supply of intracellular Ca++ for pathogen proliferation in the pathogen-exposed ticks. Analyses of differential expression, focused on functional subcategories including immune, sialome, neuropeptides, and G protein-coupled receptor, revealed that E. chaffeensis-exposed ticks exhibited an upregulation of transcripts involved in the immune deficiency (IMD) pathway, antimicrobial peptides, Kunitz, an insulin-like peptide, and bursicon receptor over unexposed ones, while transcripts for metalloprotease were down-regulated in general. This study found that ticks exhibit enhanced expression of genes responsible for defense against E. chaffeensis.

4.
Ticks Tick Borne Dis ; 8(1): 60-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729288

RESUMO

Monocytic ehrlichiosis in people caused by the intracellular bacterium, Ehrlichia chaffeensis, is an emerging infectious disease transmitted by the lone star tick, Amblyomma americanum. Tick transmission disease models for ehrlichiosis require at least two hosts and two tick blood feeding episodes to recapitulate the natural transmission cycle. One blood feeding is necessary for the tick to acquire the infection from an infected host and the next feeding is needed to transmit the bacterium to a naïve host. We have developed a model for E. chaffeensis transmission that eliminates the entire tick acquisition stage while still producing high numbers of infected ticks that are also able to transmit infections to naïve hosts. Fully engorged A. americanum nymphs were ventrally needle-infected, possibly into the midgut, and following molting, the unfed adult ticks were used to infect naive deer and dogs. We have also described using the ticks infected by this method the transmission of both wild-type and transposon mutants of E. chaffeensis to its primary reservoir host, white tailed deer and to another known host, dog. The infection progression and IgG antibody responses in deer were similar to those observed with transmission feeding of ticks acquiring infection by natural blood feeding. The pathogen infections acquired by natural tick transmission and by feeding needle-infected ticks on animals were also similar to intravenous infections in causing persistent infections. Needle-infected ticks having the ability to transmit pathogens will be a valuable resource to substantially simplify the process of generating infected ticks and to study infection systems in vertebrate hosts where interference of other pathogens could be avoided.


Assuntos
Vetores Artrópodes/microbiologia , Cervos/microbiologia , Doenças do Cão/microbiologia , Ehrlichia chaffeensis/fisiologia , Ehrlichiose/veterinária , Ixodidae/microbiologia , Animais , Doenças do Cão/transmissão , Cães , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Regulação Bacteriana da Expressão Gênica , Mutação
5.
J Vet Diagn Invest ; 29(1): 109-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27852813

RESUMO

Tick-borne bacteria, Ehrlichia canis, Anaplasma platys, and Ehrlichia chaffeensis are significant pathogens of dogs worldwide, and coinfections of E. canis and A. platys are common in dogs on the Caribbean islands. We developed and evaluated the performance of a multiplex bead-based assay to detect antibodies to E. canis, A. platys, and E. chaffeensis peptides in dogs from Grenada, West Indies, where E. canis and A. platys infections are endemic. Peptides from outer membrane proteins of P30 of E. canis, OMP-1X of A. platys, and P28-19/P28-14 of E. chaffeensis were coupled to magnetic beads. The multiplex peptide assay detected antibodies in dogs experimentally infected with E. canis and E. chaffeensis, but not in an A. platys experimentally infected dog. In contrast, the multiplex assay and an in-house enzyme-linked immunosorbent assay (ELISA) detected A. platys antibodies in naturally infected Grenadian dogs. Following testing of 104 Grenadian canine samples, multiplex assay results had good agreement with commercially available ELISA and immunofluorescent assay for E. canis antibody-positive dogs ( K values of 0.73 and 0.84), whereas A. platys multiplex results had poor agreement with these commercial assays ( K values of -0.02 and 0.01). Prevalence of seropositive E. canis and A. platys Grenadian dogs detected by the multiplex and commercial antibody assays were similar to previous reports. Although the multiplex peptide assay performed well in detecting the seropositive status of dogs to E. canis and had good agreement with commercial assays, better antigen targets are necessary for the antibody detection of A. platys.


Assuntos
Doenças do Cão/diagnóstico , Ehrlichiose/veterinária , Anaplasma/imunologia , Anaplasma/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Doenças do Cão/sangue , Doenças do Cão/microbiologia , Cães , Ehrlichia canis/imunologia , Ehrlichia canis/isolamento & purificação , Ehrlichia chaffeensis/imunologia , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Granada , Valor Preditivo dos Testes
6.
PLoS One ; 11(2): e0148239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840398

RESUMO

Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the infections.


Assuntos
Anaplasma/imunologia , Anaplasmose/microbiologia , Doenças do Cão/imunologia , Ehrlichia/imunologia , Ehrlichiose/microbiologia , Doenças Transmitidas por Carrapatos/veterinária , Anaplasma/patogenicidade , Animais , Plaquetas/imunologia , Doenças do Cão/microbiologia , Cães , Ehrlichia/patogenicidade , Ehrlichiose/veterinária , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fígado/microbiologia , Pulmão/microbiologia , Contagem de Plaquetas , Baço/microbiologia , Doenças Transmitidas por Carrapatos/imunologia , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/microbiologia
7.
PLoS One ; 11(2): e0148229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26841025

RESUMO

Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ehrlichia chaffeensis/imunologia , Ehrlichiose/veterinária , Vacinas Antirrickéttsia/imunologia , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proliferação de Células , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/imunologia , Ehrlichiose/microbiologia , Ehrlichiose/prevenção & controle , Insetos Vetores/microbiologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Carrapatos/microbiologia
8.
PLoS One ; 10(7): e0132657, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186429

RESUMO

Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.


Assuntos
Ehrlichia chaffeensis/genética , Regulação da Expressão Gênica , Especificidade de Hospedeiro/genética , Mutação/genética , Animais , Southern Blotting , Cervos/microbiologia , Cães/microbiologia , Ehrlichiose/sangue , Ehrlichiose/microbiologia , Ehrlichiose/veterinária , Injeções , Insetos Vetores/microbiologia , Mutagênese Insercional/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Carrapatos/microbiologia , Transcrição Gênica
9.
Infect Immun ; 83(7): 2827-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916990

RESUMO

Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogen's clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.


Assuntos
Vacinas Bacterianas/imunologia , Ehrlichia chaffeensis/imunologia , Ehrlichiose/prevenção & controle , Ehrlichiose/veterinária , Animais , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Sangue/microbiologia , Cervos , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/imunologia , Genes Bacterianos , Humanos , Mutagênese Insercional , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
10.
PLoS One ; 9(10): e109056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303515

RESUMO

Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.


Assuntos
Cervos/microbiologia , Cães/microbiologia , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/transmissão , Ehrlichiose/veterinária , Macrófagos/microbiologia , Carrapatos/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Linhagem Celular , Ehrlichiose/sangue , Humanos
11.
PLoS Pathog ; 9(2): e1003171, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23459099

RESUMO

Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogen's in vivo growth.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Cervos/microbiologia , Ehrlichia chaffeensis/genética , Ehrlichiose/transmissão , Mutação/genética , Carrapatos/microbiologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Southern Blotting , Células Cultivadas , Cervos/genética , Ehrlichia chaffeensis/efeitos dos fármacos , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/genética , Ehrlichiose/veterinária , Genoma Bacteriano , Humanos , Macrófagos/microbiologia , Dados de Sequência Molecular , Mutagênese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Carrapatos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...